La topologie cofinie est la topologie que l'on peut définir sur tout ensemble X de la manière suivante : l'ensemble des ouverts est constitué de l'ensemble vide et parties de X cofinies, c'est-à-dire dont le complémentaire dans X est fini. Formellement, si l'on note τ la topologie cofinie sur X, on a :

ou plus simplement, en définissant la topologie via les fermés :

les fermés de X sont X et ses parties finies.

Propriétés

modifier

Exemples

modifier

Si X est une variété algébrique de dimension au plus 1, alors son espace topologique sous-jacent est cofini.

La topologie du spectre premier de l'anneau ℤ des entiers est strictement moins fine que la topologie cofinie, car le singleton constitué du point générique (correspondant à l'idéal nul) est fini mais pas fermé.

Variantes

modifier

Référence

modifier

(en) Lynn Arthur Steen et J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, (1re éd. Springer, 1978), 244 p. (ISBN 978-0-486-68735-3, lire en ligne) exemples 18, 19, 20.