Théorème de Lehmann-Scheffé

Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision.

Théorème de Lehman-Scheffé
Type
Nommé en référence à

De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais.

Ce théorème nous donne donc une condition suffisante pour trouver un estimateur sans biais optimal. Il nous dit également que cet estimateur s'exprime comme une fonction de la statistique exhaustive totale S, c'est-à-dire de la forme g(S) où g est une fonction mesurable.

(On dit qu'une statistique est totale[1] si : implique presque partout.)

Énoncé

modifier

L'énoncé du théorème de Lehmann Sheffé est :

Soit   iid avec une fonction de densité de probabilité donnée ou une fonction de masse discrète dépendant d'un paramètre   avec  . Soit   une statistique exhaustive et complète pour  . Soit   un estimateur non biaisé pour   (U dépend de T). Soit   :

1. U est le seul estimateur non-biaisé qui dépend de  .

2.   uniformément sur   pour tout autre estimateur non-biaisé Z de  . Ce qui signifie que U est le UMVUE pour   et est unique.

Références

modifier
  1. Le terme de statistique complète est également parfois utilisé. cf Didier Dacunha-Castelle, Marie Duflo, Probabilités et statistique. Problèmes à temps fixe, tome 1, Masson (1994)