Second snark de Loupekine

graphe 3-régulier possédant 22 sommets et 33 arêtes

Le second snark de Loupekine est, en théorie des graphes, un graphe 3-régulier possédant 22 sommets et 33 arêtes.

Second snark de Loupekine
Image illustrative de l’article Second snark de Loupekine
Représentation du second snark de Loupekine.

Nombre de sommets 22
Nombre d'arêtes 33
Distribution des degrés 3-régulier
Rayon 3
Diamètre 4
Maille 5
Automorphismes 12
Nombre chromatique 3
Indice chromatique 4
Propriétés Régulier
Snark
Cubique

Propriétés

modifier

Propriétés générales

modifier

Le diamètre du second snark de Loupekine, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 3 et sa maille, la longueur de son plus court cycle, est 5. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Coloration

modifier

Le nombre chromatique du second snark de Loupekine est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes mais ce nombre est minimal. Il n'existe pas de 2-coloration valide du graphe.

L'indice chromatique du second snark de Loupekine est 4. Il existe donc une 4-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

modifier

Le groupe d'automorphismes du second snark de Loupekine est un groupe d'ordre 12 isomorphe au groupe diédral D6, le groupe des isométries du plan conservant un hexagone régulier. Ce groupe est constitué de 6 éléments correspondant aux rotations et de 6 autres correspondant aux réflexions.

Le polynôme caractéristique de la matrice d'adjacence du second snark de Loupekine est :  .

Voir aussi

modifier

Liens internes

modifier

Liens externes

modifier

Références

modifier