Maille (théorie des graphes)

longueur du plus court des cycles d'un graphe

En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1).

Définition

modifier

La maille d'un graphe est la longueur du plus court de ses cycles[1].

Exemples

modifier

Familles associées

modifier

Lien avec la coloration

modifier

Il existe des théorèmes à propos du rapport entre la maille et le nombre chromatique des graphes. Par exemple, un théorème de Paul Erdős publié en 1959[2],[3] donne que pour tout g et k, il existe un graphe de maille au moins g et de nombre chromatique au moins k. Par exemple, le graphe de Grötzsch a une maille de 4 et un nombre chromatique de 4. La preuve de ce théorème utilise la méthode probabiliste.

Notes et références

modifier
  1. (en) Reinhard Diestel, Graph Theory [détail des éditions], p. 11.
  2. Paul Erdős, « Graph theory and probability », Canadian Journal of Mathematics, vol. 11,‎ , p. 34-38 (DOI 10.4153/CJM-1959-003-9).
  3. Frédéric Havet, « Méthode probabiliste pour la coloration de graphes : Graphe de grande maille et de grand nombre chromatique (présentation) », sur Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, .