Union (mathématiques)

opération ensembliste en mathématiques

Dans la théorie des ensembles, l'union ou réunion[1] est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique « ou inclusif » et est notée .

L'union des ensembles A et B est représentée dans ce diagramme de Venn par l'ensemble de la zone colorée en violet.

Union de deux ensembles

modifier

L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A B et on la dit « A union B »

Formellement :

 .

Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.

Propriétés algébriques

modifier
  • L'union est associative, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a :
    (AB) ∪ C = A ∪ (BC).
  • L'union est commutative, c'est-à-dire que, pour des ensembles A et B quelconques, on a :
    AB = BA.
  • L'intersection est distributive sur l'union, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a :
    A ∩ (BC) = (AB) ∪ (AC).
  • L'union est distributive sur l'intersection, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a :
    A ∪ (BC) = (AB) ∩(AC).

Union d'une famille d'ensembles

modifier

On généralise ce concept à un ensemble quelconque   d'ensembles (non nécessairement réduit à une paire, ni même fini) : sa réunion, notée  , a pour éléments tous les   pour lesquels il existe un   tel que   (si X est l'ensemble vide, cette réunion est donc vide[2]). L'axiome de la réunion est l'affirmation que   est un ensemble[3].

On peut alors définir la réunion d'une famille quelconque d'ensembles   : c'est la réunion de l'ensemble  . Cette réunion notée   est donc l'ensemble des éléments   pour lesquels il existe un   tel que  . Formellement :

 .

La distributivité de l'intersection ci-dessus s'étend aux familles :

 .

Notes et références

modifier
  1. Dans ce contexte, ces deux mots sont synonymes (cf. entrées union et réunion sur le portail lexical du CNRTL). Ils sont utilisés indifféremment, parfois dans un même ouvrage, comme S. Balac et L. Chupin, Analyse et algèbre : cours de mathématiques de deuxième année avec exercices corrigés et illustrations avec Maple, Lausanne, PPUR, , 1035 p. (ISBN 978-2-88074-782-4, lire en ligne).
  2. Jean-Pierre Ramis, André Warusfel et al., Mathématiques Tout-en-un pour la Licence 1, Dunod, , 3e éd. (lire en ligne), p. 22.
  3. René Cori et Daniel Lascar, Logique mathématique II. Fonctions récursives, théorème de Gödel, théorie des ensembles, théorie des modèles [détail des éditions], p. 124 de l'édition de 1993.

Articles connexes

modifier