Théorème des livres ouverts

Le théorème des livres ouverts de Giroux est un pont entre la géométrie de contact et la topologie différentielle. Il fait le lien entre les structures de contact et les décompositions en livre ouvert qui, en dimension trois, sont des objets purement topologiques. En dimension trois le théorème a une démonstration purement topologique et a eu de nombreuses conséquences en topologie en basse dimension. En grandes dimensions la preuve est analytique et les conséquences sont moins nombreuses, sans doute principalement à cause du peu de connaissances sur la toile à propos des groupes de symplectomorphismes.

Définitions

modifier

Dans toute la suite,   désigne une variété différentielle de dimension impaire   close et orientée. Un livre ouvert de   est un couple  

  •   est une sous-variété close de codimension deux à fibré normal trivial ;
  •   est une fibration qui, dans un voisinage   de  , coïncide avec la coordonnée angulaire sur le disque  .

La sous-variété   est appelée reliure du livre ouvert et l'adhérence d'une fibre de   est appelée page du livre ouvert. L'orientation de   fournit une coorientation des fibres (et donc des pages) convertie en orientation par l'orientation de  , cette orientation fournit à son tour une orientation de la reliure comme bord des pages.

Le lien avec les structures de contact est fourni par la définition suivante due à Giroux où les orientations définies plus haut servent de référence :

Une structure de contact est portée par le livre ouvert   si elle peut être définie par une forme de contact   telle que :

  •   induit sur   une forme de contact positive ;
  •   induit sur chaque fibre   de   une forme symplectique positive.

Une telle forme   sera dite adaptée à  . En dimension trois, on peut exprimer cette relation en termes de champ de Reeb : la forme   est adaptée à   ssi son champ de Reeb   est positivement tangent à la reliure et positivement transverse aux fibres.

Pour établir un lien bijectif avec les structures de contact à isotopie près on doit introduire la notion de stabilisation dont on donne ici la définition en dimension trois seulement :

Soit   une surface compacte à bord plongée dans   et   un arc simple et propre de  . On dit qu'une surface compacte   est "obtenue à partir de   par le plombage positif d'un anneau le long de  " si   , où   est un anneau plongé dans   tel que :

  •   est un voisinage régulier de   dans  ;
  •   est inclus dans une boule fermée   vérifiant  

et l'enlacement des deux composantes de bord de   dans   vaut  .

D'après un théorème de Stallings, si   est une page d'un livre ouvert   et si   est obtenue à partir de   par plombage d'un anneau, alors il existe un livre ouvert de   dont   est une page.

On appelle "stabilisation" une suite finie de plombages positifs.

Exemples

modifier

Dans   muni des coordonnées polaires   le nœud trivial   est la reliure du livre ouvert dont la fibration est simplement   et dont les pages sont de disques. En projection stéréographique dans ℝ3 dont le pôle est sur la reliure, le livre ouvert devient le couple   en coordonnées cylindriques  . On voit donc les pages d'un livre dont la reliure est infinie et qu'on a ouvert à 360°.

On peut appliquer à ce livre ouvert l'opération de plombage (positif ou négatif) et obtenir comme reliure l'entrelacs de Hopf positif ou négatif qui sont définis comme

  et  

avec comme fibration  . Les pages de ces deux livres ouverts sont des anneaux.

Les deux premiers exemples portent la structure de contact canonique sur la sphère (voir les exemples de géométrie de contact) mais celui dont la reliure est   porte une structure de contact vrillée.

Les énoncés

modifier

La définition de structure de contact portée par un livre ouvert permet de réinterpréter le théorème de Thurston-Winkelnkemper ainsi :

Théorème de Thurston-Winkelnkemper — Tout livre ouvert porte au moins une structure de contact.

Et maintenant le théorème de Giroux :

Théorème de Giroux — Soit   une variété close de dimension trois.

  • Toutes les structures de contact portées par un même livre ouvert de   sont isotopes.
  • Toute structure de contact de   est portée par un livre ouvert.
  • Deux livres ouverts de   portant des structures de contact isotopes ont des stabilisations isotopes.

On peut donc résumer la situation ainsi : la notion de structure de contact portée par un livre ouvert établit une bijection entre les structures de contact à isotopie près et les livres ouverts à isotopie et stabilisation près.

En grandes dimensions

modifier

En dimension plus grandes que 5, il existe aussi des théorèmes analogues dus à Giroux et Mohsen mais qui demandent un peu plus de définitions.

Référence

modifier

E. Giroux, « Géométrie de contact : de la dimension trois vers les dimensions supérieures », dans Proceedings of the ICM, Beijing 2002, vol. 2, p. 405-414 « math/0305129v1 [archive] », texte en accès libre, sur arXiv.