Théorème de Kneser (combinatoire)

énoncé sur les sommes d'ensembles dans les groupes abéliens, en combinatoire additive

En combinatoire additive, le théorème de Kneser, nommé d'après Martin Kneser, est un énoncé sur les sommes d'ensembles dans les groupes abéliens[1].

Énoncé

modifier

Soient A et B deux parties finies non vides d'un groupe abélien G et H le sous-groupe (fini) des périodes de A + B :

 

alors[2] :

 

ce qui entraîne : |A + B| ≥ |A| + |B| – |H| ; en particulier si |A + B| ≤ |A| + |B| – 2 alors A + B est périodique, i.e. possède des périodes non nulles.

De plus, si l'inégalité (✲) est stricte, alors |A + B| est même supérieur ou égal à |A + H| + |B + H|[2].

Notes et références

modifier
  1. (de) M. Kneser, « Abschätzungen der asymptotischen Dichte von Summenmengen », Math. Z., vol. 58,‎ , p. 459-484 (lire en ligne)
  2. a et b (en) Alfred Geroldinger et Imre Z. Ruzsa (en), Combinatorial Number Theory and Additive Group Theory, Springer, (ISBN 978-3-7643-8961-1, lire en ligne), p. 143

Voir aussi

modifier

Articles connexes

modifier

Lien externe

modifier

(en) Hamidoune’s Freiman-Kneser theorem for nonabelian groups, , sur le blog de Terence Tao