Le test de Wald est un test paramétrique économétrique dont l'appellation vient du mathématicien américain d'origine hongroise Abraham Wald (-) avec une grande variété d'utilisations. Chaque fois que nous avons une relation au sein des ou entre les éléments de données qui peuvent être exprimées comme un modèle statistique avec des paramètres à estimer, et tout cela à partir d'un échantillon, le test de Wald peut être utilisé pour « tester la vraie valeur du paramètre » basé sur l'estimation de l'échantillon.

Test de Wald
Type
Test statistique, concept mathématique (en)Voir et modifier les données sur Wikidata
Nommé en référence à

Détails mathématiques

modifier

Dans le cadre du test de Wald, l'estimation   (l'argument ou la fonction de vraisemblance est maximal) est comparée à une valeur hypothétique  . En particulier, la différence au carré   est pondérée par la courbure de la fonction de log-vraisemblance.

Test sur un seul paramètre

modifier

Si l'hypothèse n'implique qu'une seule restriction de paramètre, alors la statistique de Wald prend la forme suivante :

 

qui, sous l'hypothèse nulle, suit une distribution χ2 asymptotique avec un degré de liberté.

Test(s) sur plusieurs paramètres

modifier

Le test de Wald peut être utilisé pour tester une seule hypothèse sur plusieurs paramètres, ainsi que pour tester conjointement plusieurs hypothèses sur des paramètres uniques/multiples. Soit   notre estimateur d'échantillon des paramètres P (c'est-à-dire,   est un   vecteur), qui est supposé suivre asymptotiquement une distribution normale avec matrice de covariance V,  . Le test des hypothèses Q sur les paramètres P s'exprime par une matrice   ; R :

 
 

La statistique de test est :

 

  est un estimateur de la matrice de covariance.

Supposons que  . Alors, par le théorème de Slutsky et par les propriétés de la distribution normale, en multipliant par R on a la distribution :

 

Rappelons qu'une forme quadratique de la loi normale possède une distribution χ2 :

 

En réarrangeant n on obtient finalement :

 

Voir aussi

modifier