Symboles de Christoffel
En mathématiques et en physique, les symboles de Christoffel (ou coefficients de Christoffel, ou coefficients de connexion) sont une expression de la connexion de Levi-Civita dérivée du tenseur métrique. Les symboles de Christoffel sont utilisés dans les calculs pratiques de la géométrie de l'espace : ce sont des outils de calculs concrets, par exemple pour déterminer les géodésiques des variétés riemanniennes, mais en contrepartie leur manipulation est relativement longue, notamment du fait du nombre de termes impliqués.
Ce sont des outils de base utilisés dans le cadre de la relativité générale pour décrire l'action de la masse et de l'énergie sur la courbure de l'espace-temps.
Au contraire, les notations formelles pour la connexion de Levi-Civita permettent l'expression de résultats théoriques de façon élégante, mais n'ont pas d'application directe pour les calculs pratiques.
Ces symboles ont pour éponyme[1],[2] [3] le mathématicien allemand Elwin Bruno Christoffel (-) qui les a introduits en [4] dans un article[5],[6] daté du [7].
Préliminaires
modifierLes définitions données ci-dessous sont valides à la fois pour les variétés riemanniennes et les variétés pseudo-riemanniennes, telles que celles utilisées en relativité générale. On utilise de même la notation des indices supérieurs pour les coordonnées contravariantes, et inférieurs pour les coordonnées covariantes.
Définition
modifierDans une variété riemanienne ou pseudo-riemanienne , il n'existe pas de système de coordonnées qui s'applique à toute la variété. On peut néanmoins définir localement un repère de Lorentz (voir définition d'une variété topologique : on peut trouver en chaque point de un voisinage ouvert homéomorphe à un ouvert de l'espace ).
La dérivée covariante permet d'évaluer l'évolution d'un champ de vecteurs en prenant en compte non seulement ses modifications intrinsèques, mais aussi celle du système de coordonnées. Ainsi, si on prend un repère en coordonnées polaires, les deux vecteurs et ne sont pas constants et dépendent du point étudié. La dérivée covariante permet de prendre en compte ces deux facteurs d'évolution.
Les symboles de Christoffel représentent alors l'évolution des vecteurs de base, à travers leur dérivée covariante :
On obtient ainsi les coefficients de Christoffel à partir de la connexion si celle-ci est connue. Réciproquement, la connaissance des coefficients de Christoffel permet de reconstituer l'expression de la connexion en utilisant les propriétés de la dérivée covariante :
Les coordonnées du vecteur sont notées à l'aide d'un point-virgule, selon la définition :
En remplaçant par dans la relation ci-dessus, on obtient :
On voit donc qu'effectivement l'évolution du vecteur dépend à la fois de son évolution intrinsèque (terme ) et de celle de la base, rattaché au deuxième terme et notamment à , symbole de Christoffel.
Ce résultat est valable pour un vecteur qui est un tenseur d'ordre 1. Pour un tenseur d'ordre et de rang , on pourrait obtenir la même chose :
Les indices en gras ci-dessus mettent en valeur les contributions des différents composantes de Christoffel. On observe que les indices contravariants donnent lieu à une contribution positive du coefficient de Christoffel, et les indices covariants à une contribution négative.
Expression à partir du tenseur métrique
modifierLe plus souvent, les coefficients de Christoffel sont calculés à partir du tenseur métrique , en prenant en compte le fait que
car la métrique est conservée localement : on a localement un repère de Lorentz en chaque point de l'espace.
En appliquant à , tenseur d'ordre 2 et de rang (0,2), l'équation des coefficients de Christoffel donnée ci-dessus (2 coordonnées covariantes donnent 2 contributions « négatives »), en notant :
On trouve alors, en permutant les indices et en exprimant plusieurs valeurs des coefficients :
où le tenseur est l'inverse du tenseur , défini en utilisant le symbole de Kronecker par .
Remarque : bien que les symboles de Christoffel soient écrits dans la même notation que les tenseurs, ce ne sont pas des tenseurs. En effet, ils ne se transforment pas comme les tenseurs lors d'un changement de coordonnées[8].
La plupart des auteurs choisissent de définir les symboles de Christoffel dans une base de coordonnées holonomiques, qui est la convention suivie ici. Dans des coordonnées non holonomiques, les symboles de Christoffel s'expriment dans une formulation plus complexe :
où les sont les coefficients de commutation de la base, c'est-à-dire
où sont les vecteurs de base et correspond au crochet de Lie. Deux exemples de base non holonomiques sont par exemple celles associées aux coordonnées sphériques ou cylindriques.
Par exemple, les seuls termes non constants du tenseur métrique en coordonnées sphériques sont , , et l'on a , , . Les éléments non nuls du symbole de Christoffel en fonction du tenseur métrique sont donc peu nombreux :
De même, le seul terme non constant du tenseur métrique en coordonnées cylindriques est , et l'on a . Les éléments non nuls du symbole de Christoffel en fonction du tenseur métrique sont donc peu nombreux :
Contraction
modifierUtilisation en robotique
modifierLes symboles de Christoffel apparaissent [9] dans la modélisation dynamique, selon la mécanique rationnelle, des systèmes mécaniques articulés.
Soit un tel système, dont les variables articulaires sont .
La matrice d'inertie, (symétrique, définie positive), du système étant notée , son énergie cinétique s'écrit:
On peut alors associer [10] au système un espace de configuration riemannien, de métrique :
Avec les notations suivantes :
- , l'énergie potentielle (qui est proportionnelle à l'intensité de la pesanteur).
- .
- , les efforts des actionneurs, (auxquels on peut ajouter des frottements non conservatifs).
Et en introduisant les symboles de Christoffel de première espèce [11] :
Les équations du mouvement sont des équations de Lagrange qui prennent [12] la forme :
En pratique, le calcul algébrique des coefficients de ces équations est envisageable [13] avec un logiciel de calcul symbolique.
Notes et références
modifier- ↑ Chen 2014, chap. 2, § 2.3, rem. 2.1, p. 37.
- ↑ Fré 2018, chap. 7, § 7.5, p. 210.
- ↑ Taillet, Villain et Febvre 2018, s.v. connexion affine, p. 149, col. 1.
- ↑ Hazewinkel 1988, s.v. Christoffel symbol, p. 140, col. 1.
- ↑ Springer 2012, chap. 9, § 9.1, p. 109, n. 1.
- ↑ Christoffel 1869.
- ↑ Christoffel 1869, p. 70.
- ↑ Comme la dérivée covariante d'un tenseur, qui est un tenseur, est la somme de sa dérivée partielle, qui n'est pas un tenseur, et des symboles de Christoffel multipliés par ce tenseur, ces derniers ne peuvent être des tenseurs (sachant que la sommes et les produits de tenseurs donnent des tenseurs).
- ↑ (en) Alessandro De Luca, Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti - DIAG (Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Università di Roma "La Sapienza"), « Dynamic model of robots: Lagrangian approach. », Robotics 2 (consulté le ), p. 20-22
- ↑ André Lichnérowicz, Élément de calcul tensoriel, Paris, Armand Colin, coll. « Section de Mathématiques » (no 259), 4° édition, 1958 (réimpr. 8° edition, 1967), 4°édition revue éd. (1re éd. 1950), 218 p., {unité, chap. 6 (« La dynamique des systèmes holonomes. A-Liaisons indépendantes du temps »), p. 133-148
- ↑ Attention, on rencontre des variantes dans l'ordre de l'écriture des indices i,j, k
- ↑ Formule classique, voir par exemple: (en) Scott Robert Ploen, Geometric Algorithms for the Dynamics and Control of Multibody Systems, Irvine, University of California Press, , 158 p., {unité (présentation en ligne, lire en ligne), chap. 3 (« Dynamics of Open Chain Multibody Systems - Join Space »), p. 548-552
- ↑ Il existe aussi des algorithmes, basés sur la formulation vectorielle de la mécanique, qui permettent de calculer numériquement ces coefficients.
Voir aussi
modifierBibliographie
modifier: document utilisé comme source pour la rédaction de cet article.
- [Chen 2014] (en) Bang-Yen Chen, Total mean curvature and submanifolds of finite type [« Courbure moyenne totale et sous-variétés de type fini »], Singapour, World Scientific, coll. « Series in pure mathematics » (no 27), , 2e éd. (1re éd. ), 1 vol., XVIII-467, 15,2 × 22,9 cm (ISBN 978-981-4616-68-3 et 978-981-4616-69-0, EAN 9789814616683, OCLC 904980109, DOI 10.1142/9237, SUDOC 184331854, présentation en ligne, lire en ligne).
- [Fré 2018] (en) Pietro Giuseppe Fré, A conceptual history of space and symmetry : from Plato to the superworld [« Une histoire conceptuelle de l'espace et de la symétrie : de Platon au super-univers »], Cham, Springer, hors coll., , 1re éd., 1 vol., XVI-319, ill. et fig., 15,6 × 23,4 cm (ISBN 978-3-319-98022-5 et 978-3-030-07440-1, EAN 9783319980225, OCLC 1064943543, DOI 10.1007/978-3-319-98023-2, SUDOC 230542409, présentation en ligne, lire en ligne). .
- Claude Semay, Bernard Silvestre-Brac, Introduction au calcul tensoriel, Applications à la physique, Dunod, 2007 (ISBN 978-2-10-050552-4).
- [Springer 2012] (en) Charles Eugene Springer, Tensor and vector analysis : with applications to differential geometry [« Analyse vectorielle et tensorielle : avec des applications à la géométrie différentielle »], Mineola, Dover, , 1re éd., 1 vol., X-242, ill. et fig., 15,2 × 22,9 cm (ISBN 978-0-486-49801-0, EAN 9780486498010, OCLC 898680629, présentation en ligne, lire en ligne).
Publication originale
modifier- [Christoffel 1869] (de) Elwin Bruno Christoffel, « Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades » [« Sur la transformation des expressions différentielles homogènes du deuxième degré »], Journal für die reine und angewandte Mathematik, vol. 70, , p. 46-70 (OCLC 4632478754, DOI 10.1515/crll.1869.70.46, lire en ligne).
Dictionnaires et encyclopédies
modifier- [Hazewinkel 1988] (en) Michiel Hazewinkel (éd.), Encyclopaedia of mathematics : an updated and annotated translation of the Soviet mathematical encyclopaedia [« Encyclopédie de mathématiques : une traduction, mise à jour et annotée, de l'encyclopédie soviétique de mathématiques »], t. II : C, Dordrecht, Reidel – Kluwer Academic, hors coll., , 1re éd., 1 vol., IX-508, ill. et fig., 30 cm (ISBN 978-1-55608-001-2 et 978-94-009-6002-2, EAN 9781556080012, OCLC 491733064, BNF 37357904, DOI 10.1007/978-94-009-6000-8, SUDOC 075475073, présentation en ligne, lire en ligne), s.v. Christoffel symbol [« symbole de Christoffel »], p. 140, col. 1-2.
- [Taillet, Villain et Febvre 2018] Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Supérieur, hors coll. / physique, , 4e éd. (1re éd. ), 1 vol., X-956, ill. et fig., 17 × 24 cm (ISBN 978-2-8073-0744-5, EAN 9782807307445, OCLC 1022951339, BNF 45646901, SUDOC 224228161, présentation en ligne, lire en ligne), s.v. connexion affine, p. 149, col. 1. .