Série statistique à deux variables

En statistique, il est courant d'étudier simultanément deux variables pour analyser l'existence d'une corrélation entre elles. Pour donner un exemple, cette approche peut être utilisée pour examiner la relation entre l'âge et la taille des enfants de 0 à 20 ans, le prix au mètre carré et l'année, ou encore l'allongement d'un ressort en fonction de la force appliquée.

Traitement des données

modifier

Pour chaque individu, on relève la valeur de deux caractères x et y. On obtient alors une liste de couples de nombres   que l'on peut présenter sous forme d'un tableau.

Exemple 1: moyenne de l'année et note à l'examen pour un échantillon de 24 personnes.

Note de l'année 8 9 7 15 12 12 10 8
Note à l'examen 7 9 4 17 13 15 9 13
Note de l'année 11 11 7 8 11 11 12 12
Note à l'examen 14 9 11 10 9 12 17 12
Note de l'année 7 9 9 5 9 5 10 4
Note à l'examen 8 15 12 7 14 12 11 7

Exemple 2: Masse appliquée (en gramme) et longueur du ressort (en cm).

Masse en grammes 7 10 18 20 5 24 12 3
Longueur en cm 8.5 9 10.5 11 8 11.8 9.4 7.5

Caractéristiques numériques

modifier

On peut étudier séparément chaque caractère statistique et calculer leur moyenne   et  , médiane, quartile, écart type   et  , variance V(x) et V(y) .

On aura besoin de définir des quantités qui font intervenir conjointement les deux caractères :

  • la covariance cov(x, y) =   ;
  • le coefficient de corrélation linéaire r =  .

Représentation graphique

modifier

Chaque couple de réels   définit un point   de coordonnées  . L'ensemble de ces points s'appelle un nuage de points. Il arrive que deux points aient les mêmes coordonnées, ils seront alors représentés par un point dont la surface sera deux fois celle des autres.

On peut aussi placer le point moyen. C'est le point G dont les coordonnées sont  

Le nuage de points est un bon indicateur pour vérifier une corrélation entre les caractères x et y. Si les points sont sous la forme d'un nuage, il est fort à parier que les phénomènes ne sont pas corrélés. S'ils semblent dessiner une courbe, on cherchera à déterminer la nature de la courbe en procédant à un ajustement.

Exemple 1 : Nuage de points donnant la note à l'examen en fonction de la moyenne de l'année.

 

L'observation du nuage de points laisse supposer qu'il n'existe pas de corrélation nette entre les notes de l'année et les notes à l'examen. Le calcul du coefficient de corrélation donne pour résultat 0,6, soit une corrélation modeste. On peut toutefois observer qu'une grande partie du nuage est situé au-dessus de la droite d'équation y = x ce qui laisse penser que les élèves se sont mieux sortis de l'examen que du contrôle continu.

Exemple 2 : Nuage de points donnant la longueur du ressort en fonction de la masse appliquée.

 

Les points semblent alignés. On va donc tenter un ajustement affine.

Ajustement

modifier

Ajustement affine

modifier

Si les points semblent alignés, on détermine la droite d'ajustement grâce à une régression linéaire.

La droite d'ajustement a pour équation:

 

Elle passe par le point moyen G.

Cet ajustement est considéré comme valide si le coefficient de corrélation linéaire r est assez grand en valeur absolue (la borne   est souvent utilisée[1]).

Exemple du ressort

La droite de régression a pour équation y = 0,2x + 7 et le coefficient de corrélation est pratiquement égal à 1. On peut donc affirmer sans trop d'erreur que l'allongement du ressort est proportionnel à la masse appliquée (lois de déformation élastique). Le fait que les points ne soient pas exactement alignés provient des erreurs ou imprécisions des mesures.

 

Ajustement exponentiel

modifier

Si les points semblent dessiner une exponentielle, il n'est pas adéquat de tenter un ajustement affine. Pour vérifier la corrélation exponentielle, il est bon de tracer un nouveau nuage de point de coordonnées  , ou bien de tracer le nuage de points dans un repère semi-logarithmique. Si les points semblent alignés, on peut tenter un ajustement affine de   en fonction de  .

Si la droite d'ajustement a pour équation z = ax + b, cela signifie que ln(y) = ax+b. Il existe donc une relation exponentielle entre y et x:

 

Les formules de régression linéaire donnent

  • pour a.  
  • pour K.  

Et si on appelle  , la moyenne géométrique des  , on remarque que

 

La courbe passe alors par le point  

Exemple 3 : Évolution de l'actif net d'une mutuelle de 1988 à 1997 (d'après bac Nouvelle-Calédonie ).

année depuis 1900 :   88 89 90 91 92 93 94 95 96 97
Actif net en milliards d'Euros:   5,89 6,77 7,87 9,11 10,56 12,27 13,92 15,72 17,91 22,13
  1,7733 1,9125 2,0631 2,2094 2,358 2,5072 2,6333 2,7549 2,8854 3,0969

Le tracé du nuage de points montre plutôt le dessin d'une fonction exponentielle. Le soupçon est confirmé par le tracé du nuage de points de coordonnées   qui donne des points presque alignés.

L'ajustement affine de z en fonction de x conduit à l'équation z = 0,143x - 10,813 avec un coefficient de corrélation voisin de 1.

On peut donc affirmer que l'évolution de l'actif semble être une fonction exponentielle de l'année:

 
  Tracé du nuage et de l'ajustement exponentiel

Ajustement sous forme de puissance

modifier

Il est possible aussi que la relation soit sous forme de puissance. Le phénomène est difficile à voir sur le nuage de point. Si on soupçonne une corrélation du type puissance, on trace le nuage des points de coordonnées  , ou bien on trace le nuage de points de coordonnées   dans un repère log-log. Si les points paraissent alignés on tente une régression linéaire de   en fonction de  .

Si la droite d'ajustement a pour équation z = at + b, cela signifie que ln(y) = aln(x)+b. Il existe donc une relation en puissance entre y et x:

 

Les formules de régression linéaire donnent

  • pour a.  
  • pour K.  

Et si on appelle  , la moyenne géométrique des   et  , la moyenne géométrique des   on remarque que

 

La courbe passe alors par le point  

Exemple: Étude de la période de certaines planètes en fonction du demi-grand axe de leur trajectoire.

Planète demi grand axe a en   m période T en   ln(a) ln(T)
Mercure 57,9 7,59 4,059 2,025
Venus 108,2 19,36 4,684 2,863
Terre 149,6 31,47 5,008 3,449
Mars 227,9 59,19 5,429 4,081
Jupiter 778,3 373,32 6,657 5,992

Une représentation du nuage de points dans un repère log-log présente des points presque alignés.

Un ajustement linéaire de ln(T) en fonction de ln(a) conduit à l'équation :

ln(T) = 1,5ln(a) - 4,062

avec un coefficient de corrélation linéaire très proche de 1.

Ce qui conduit à la relation suivante:

 
  conforme à la troisième loi de Kepler

Notes et références

modifier
  1. Dany-Jack Mercier, Cahiers de mathématiques du supérieur: Volume 1, Statistiques p42

Voir aussi

modifier

Sur les autres projets Wikimedia :