Régression de Cox

modèle statistique

La régression de Cox (modèle à risque proportionnel) — nommée ainsi d'après le statisticien britannique David Cox — est une classe de modèles de survie en statistique. Les modèles de survie étudient le temps écoulé avant qu'un événement ne survienne. Historiquement, dans le modèle de Cox, cet événement est le décès de l'individu, c'est pourquoi on parle généralement de survie et de décès. Au cours des années, l'utilisation du modèle s'est étendue à d'autres situations, l'événement peut donc être de quelconque nature : il peut s'agir de la récidive d'une maladie, ou à l'inverse d'une guérison. D'un point de vue statistique, la nature de l'événement n'est bien sûr pas importante, il s'agira alors d'interpréter les coefficients en conséquence.

Prenons le cas d'une étude longitudinale, bien souvent, il n'est pas envisageable de suivre les individus sur une longue période, et les événements ne sont pas forcément observés sur toute la population, on parle alors de données tronquées ou censurées. L'avantage d'un modèle comme celui de Cox est que l'on peut prendre en compte ces données même si elles ne sont pas « complètes ».

Théorie

modifier

Le modèle de Cox exprime la fonction de risque instantané de décès   (on peut aussi trouver les appellations suivantes : fonction de risque, taux de panne, taux de fiabilité, force de mortalité, taux de risque...) en fonction du temps   et des covariables  . On a alors :

 


De manière plus formelle, pour un individu, la fonction   correspond au risque instantané de décès à l'instant t sachant qu'il est vivant juste avant t.

  est appelé le risque de base. Il correspond au risque instantané de décès lorsque toutes les covariables sont nulles.

On peut noter quelques points :

  • On peut séparer la formule en deux parties, la première ( ) est dépendante du temps contrairement à la seconde
    ( ) qui elle ne dépend que des covariables (le modèle de Cox peut aussi s'étendre à des covariables qui dépendent du temps, confère à sous-partie correspondante).
  • On dit que le modèle de Cox est semi-paramétrique. En effet, on ne cherche pas à estimer la fonction  , qui en fait, est la même pour tous les individus à un instant donné. Ce qui nous importe, c'est le rapport des risques instantanés de décès pour deux individus exposés à des facteurs de risques différents.
  • Il découle de cette formule une hypothèse essentielle du modèle de Cox : celle des risques proportionnels. Pour comprendre cette notion, prenons deux individus   et   qui ne diffèrent que par une seule covariable, disons la k-ième. On peut imaginer que cette covariable vaut 0 chez   et 1 chez  .

On obtient alors, quel que soit   :

 

Le rapport est donc indépendant du temps, autrement dit, quel que soit le temps t, l'individu   a un risque instantané de mourir   fois celui de l'individu  .


Hypothèse des risques proportionnels

modifier

Il s'agit d'une hypothèse forte du modèle de Cox, il faut donc au préalable vérifier que celle-ci est satisfaite. Pour chaque covariable, on teste alors si son effet est indépendant du temps. Cet effet doit être constant, ce qui signifie qu'il peut être bénéfique, nocif ou simplement nul. Il existe différentes méthodes pour vérifier si l'hypothèse des risques proportionnels est satisfaite. On peut s'appuyer sur des méthodes graphiques, par exemple, si l'on veut vérifier l'hypothèse des risques proportionnels sur une covariable   - qui prend les valeurs 0 ou 1 - ; alors on peut regarder si les courbes   des deux strates (i.e. : les individus pour qui   et ceux pour qui  ) paraissent translatées (avec   la fonction de survie, voir aussi le lien entre la fonction survie et la fonction de risque). Si c'est le cas, on pourrait penser que l'hypothèse est vérifiée.

Il existe cependant des tests statistiques. Parmi eux, le test des résidus de Schoenfeld : pour chaque date de mort  , on calcule la différence entre les caractéristiques de l’individu décédé (en cas d’ex aequo, on calcule un résidu pour chaque individu et chaque temps de décès et on somme les résidus) et une moyenne pondérée des caractéristiques des individus à risque de décéder au temps  . Ceci donne :

 [1]

Avec :

  •   : résidu au temps  
  •   : valeur de la covariable   pour l'individu décédé au temps  
  •   : moyenne pondérée de la covariable   chez les individus à risque au temps  

On utilise les résidus standardisés qui sont en fait les résidus divisés par leur variance.

Si l’hypothèse des risques proportionnels est vérifiée, alors les résidus doivent être distribués de la même manière au cours du temps. En plus de la statistique de test, il est courant d’effectuer une représentation graphique des résidus en fonction du temps.

Généralement, cette hypothèse est vérifiée pour la plupart des covariables. Si ce n'est pas le cas, une des solutions est de stratifier sur les covariables qui ne vérifient pas l'hypothèse des risques proportionnels.

Estimations des coefficients

modifier

L'estimation des   se fait par la méthode du maximum de vraisemblance. La vraisemblance d’un échantillon est en fait la probabilité d’observer cet échantillon, intuitivement donc, on veut maximiser cette probabilité.

Prenons donc un échantillon de données indépendantes avec les notations suivantes :

  •   le vecteur colonne des covariables de la i-ème personne (pouvant d'ailleurs dépendre du temps)
  •   le vecteur colonne des coefficients  
  •   les temps de décès
  •   le nombre de décès au temps  
  •   l'ensemble des décès au temps  
  •   le nombre d'individus à risque de mourir au temps  
  •   l'ensemble des individus à risque de mourir au temps  


Au temps  , la probabilité qu’un sujet   décède sachant qu'il est vivant au temps  est :

 


Au temps  , la vraisemblance de l'ensemble des individus appartenant à   s'écrit alors :

 


Finalement, la fonction de vraisemblance (partielle) de Cox peut s'écrire :

  [2]


Il s’agit donc de résoudre l’équation de sorte que   soit maximale. La valeur V pour laquelle la fonction L atteint son maximum est la vraisemblance de l’échantillon.


Interprétation des coefficients

modifier

Prenons une covariable   qui peut prendre deux valeurs : 0 si l'individu prend le traitement A ou 1 s'il s'agit du traitement B. Prenons comme référence les individus qui prennent le traitement A (la manière de procéder pour le codage des variables est parfaitement identique aux modèles tels que la régression logistique ou linéaire), alors le coefficient   est le Risque instantané Relatif (ici risque instantané de décès), aussi appelé taux relatif associé au traitement B par rapport au traitement A. Autrement dit, les individus prenant le traitement B ont un risque instantané de décès   fois celui des individus prenant le traitement A. Ceci signifie que, sur une durée courte, un patient prenant le traitement B a une probabilité de décès égale à   fois celle qu'il aurait en prenant le traitement A. Ceci n'est pas vrai sur une durée longue : à l'extrême, sur un temps infini, la probabilité de décès pour tout patient est de 1, et non de 1 dans un groupe et   dans l'autre groupe.

Extensions

modifier

Covariables dépendantes du temps

modifier

D'un point de vue mathématique, il n'est pas difficile d'inclure des variables qui dépendent du temps. C'est l'interprétation des coefficients qui est par contre très délicate. On ne peut plus interpréter   comme un Risque Relatif.

Présence de données corrélées

modifier

Il peut arriver que l'hypothèse d'indépendance des données ne soit pas valable : les données sont alors groupées.

On note, par exemple, que l’estimateur de Kaplan-Meier reste valable en présence de données corrélées. Avec des données indépendantes, pour estimer la variance de l’estimateur de Kaplan-Meier, on utilise généralement la formule de Greenwood qui, dans le cas de données corrélées, n’est plus valable. Il a donc fallu développer d’autres estimateurs de la variance, on retrouve dans la littérature celui de Ying & Wei[3] dont l’application est disponible sur des packages spécifiques de certains logiciels de statistiques (prodlim pour le logiciel R par exemple).

Quant aux modèles de Cox adaptés aux données corrélées, il en existe deux types : les modèles à fragilité partagée (frailty models) dans lesquels on précise la nature de la corrélation et les modèles marginaux (marginal models) dans lesquels il n'est pas nécessaire de préciser la nature de la corrélation.

En présence de données corrélées, un modèle de Cox classique estime des coefficients convergents et asymptotiquement normaux, par contre la matrice de variance-covariance des estimateurs n’est pas valable (Lin 1994[4], Spiekerman 1998[5]). Pour contourner ce problème, les modèles marginaux utilisent comme matrice de variance-covariance, une matrice corrigée dite robuste ou estimateur sandwich.

Références

modifier
  1. (en) D. Schoenfeld, « Partial Residuals for The Proportionnal Hazards Regression Model », Biometrika, vol. 69,‎ , p. 239-241
  2. (en) D.R. Cox, « Partial Likelihood », Biometrika, vol. 62,‎ , p. 269-276
  3. (en) Z. Ying, L.J. Wei, « The Kaplan-Meier Estimate for Dependent Failure Time Observations », Journal of Multivariate Analysis, vol. 50,‎ , p. 17-29
  4. (en) D.Y. Lin, « Cox Regression Analysis of Multivariate Failure Time Data : The Marginal Approach », Statistics In Medicine, vol. 13,‎ , p. 2233-2247
  5. (en) C.F. Spiekerman, D.Y. Lin, « Marginal Regression Models for Multivariate Failure Time Data », Journal of the American Statistical Association, vol. 93,‎ , p. 1164-1175