Polynôme d'Hermite

famille de polynômes orthogonaux

En mathématiques, les polynômes d'Hermite sont une suite de polynômes qui a été nommée ainsi en l'honneur de Charles Hermite[1] (bien qu'ils aient été définis, sous une autre forme, en premier par Pierre-Simon Laplace en 1810[2],[3], et par Joseph-Louis Lagrange lors de ses travaux sur les probabilités, et apparaissent aussi en 1859 dans un article de Pafnouti Tchebychev[4], cinq ans avant Hermite). Ils sont parfois décrits comme des polynômes osculateurs.

Ces polynômes apparaissent dans de nombreux champs d'application :

Définition

modifier

Les polynômes d'Hermite sont définis comme suit :

  (forme dite probabiliste)
  (forme dite physique)

Les deux définitions sont liées par la propriété d'échelle suivante :  .

Ils peuvent également s'écrire sous forme de développement polynomial[5] :

 
 

  désigne la partie entière de n/2.

 
Polynômes d'Hermite

Les premiers polynômes d'Hermite sont les suivants :

 
 
 
 
 
 
 
 
 
 
 
 
 
 

On peut démontrer que dans Hp les coefficients d'ordre ayant la même parité que p – 1 sont nuls et que les coefficients d'ordre p et p – 2 valent respectivement 1 et p(p – 1)2.

Propriétés

modifier

Orthogonalité

modifier

Le polynôme Hp est de degré p. Ces polynômes sont orthogonaux pour la mesure μ de densité

 

c'est-à-dire qu'ils vérifient :

 

  est le symbole de Kronecker. On a de même pour la forme physique :

 

Ces fonctions forment donc une base orthogonale de l'espace de Hilbert   des fonctions boréliennes telles que

 

dans lequel le produit scalaire est donné par l'intégrale

 

Des propriétés analogues sont vérifiables pour les polynômes d'Hermite sous leur forme physique.

Propriétés de récurrence

modifier

Le n-ième polynôme d'Hermite satisfait l'équation différentielle suivante (dans ses deux versions probabiliste ou physique) :

 
 

Les polynômes d'Hermite vérifient également la relation de récurrence suivante :

 
 

En outre, ils satisfont la propriété :

 
 

Un développement de Taylor à l'ordre   de   autour de   donne les formules suivantes :

 
 

Fonctions d'Hermite-Gauss

modifier

Les polynômes d'Hermite interviennent dans la définition des fonctions d'Hermite-Gauss, utiles en physique quantique ou en optique :

 

et la formule d'orthogonalité des polynômes d'Hermite pour la mesure   (démontrée plus haut) assure que, en prenant  , les fonctions d'Hermite-Gauss forment bien une famille orthonormale dans   :

 

La famille des fonctions   est utilisée en physique quantique comme étant la famille des fonctions d'onde des états propres de l'oscillateur harmonique quantique.

Les fonctions d'Hermite vérifient l'équation différentielle  , et elles héritent des polynômes d'Hermite les propriétés de récurrence :

 
 .

Enfin, cette famille de fonctions présente un autre intérêt majeur dans le cadre de l'analyse de Fourier : en notant   la transformation de Fourier (avec la convention  ), elle forme une base hilbertienne de   formée de vecteurs propres de   :

 

On notera que cette formule n'est exacte qu'en prenant le polynôme d'Hermite sous sa forme physique, et avec la convention de transformation de Fourier explicitée ci-dessus. En utilisant une autre convention, les valeurs propres changent : par exemple avec   on obtiendra  . La forme fréquentielle de la transformée de Fourier   sera plus volontiers diagonalisable avec des fonctions légèrement modifiées,  , pour lesquelles on aura  .

Notes et références

modifier
  1. C. Hermite, « Sur un nouveau développement en série de fonctions », C. R. Acad. Sci. Paris, vol. 58,‎ , p. 93–100, 266-273 (lire en ligne), reproduit in Œuvres II, 293–308.
  2. Laplace 1810 (online).
  3. P.-S. Laplace, Théorie analytique des probabilités, vol. 2, , 194–203 p. (lire en ligne)
  4. P. L. Chebyshev, « Sur le développement des fonctions à une seule variable », Bull. Acad. Sci. St. Petersb., vol. 1,‎ , p. 193–200, reproduit in Œuvres I, 501–508.
  5. (en) Bibhuti Bhusan Saha, « On a generating function of Hermite polynomials », Yokohama Mathematical Journal,‎ , p. 73-76 (lire en ligne)

Liens externes

modifier