Loi de Fisher
En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1],[2],[3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor.
Fisher-Snedecor | |
Densité de probabilité | |
Fonction de répartition | |
Paramètres | degré de liberté |
---|---|
Support | |
Densité de probabilité | |
Fonction de répartition | |
Espérance | pour |
Mode | pour |
Variance | pour |
Asymétrie | pour |
Kurtosis normalisé | pour |
modifier |
La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Caractérisation
modifierUne variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, U1 et U2, distribuées chacune selon une loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement d1 et d2 : .
La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.
La fonction de répartition associée est : où I est la fonction bêta incomplète régularisée.
La loi binomiale est liée à la loi de Fisher par la propriété suivante[4]: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors où F suit une loi de Fisher de paramètres avec
L'espérance, la variance valent respectivement pour d2 > 2 et pour d2 > 4. Pour d2 > 8, le kurtosis normalisé est .
Généralisation
modifierUne généralisation de la loi de Fisher est la loi de Fisher non-centrée (en).
Lois associées et propriétés
modifier- Si alors est distribuée selon une loi du χ² ;
- La loi est équivalente à la loi T2 de Hotelling ;
- Si alors la loi inverse est aussi une loi de Fisher ;
- Si est distribuée selon une loi de Student alors ;
- Si est distribuée selon une loi normale alors ;
- Si et alors est distribuée selon une loi bêta;
- Si est le quantile d'ordre pour et que est le quantile d'ordre pour alors .
Table de valeurs des quantiles
modifierLe tableau suivant fournit les valeurs de certains quantiles de la loi de Fisher pour différents paramètres ν1 et ν2. Pour chaque paramètre, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Fisher lui soit inférieur est de . Ainsi, pour et et , si X suit une loi de Fisher avec ces paramètres , on lit dans la table que
(dén.) |
(numérateur) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | 500 | 1 000 | |
1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 248.02 | 250.10 | 251.14 | 251.77 | 252.20 | 252.72 | 253.04 | 253.68 | 254.06 | 254.19 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.45 | 19.46 | 19.47 | 19.48 | 19.48 | 19.48 | 19.49 | 19.49 | 19.49 | 19.49 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.66 | 8.62 | 8.59 | 8.58 | 8.57 | 8.56 | 8.55 | 8.54 | 8.53 | 8.53 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.80 | 5.75 | 5.72 | 5.70 | 5.69 | 5.67 | 5.66 | 5.65 | 5.64 | 5.63 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.56 | 4.50 | 4.46 | 4.44 | 4.43 | 4.41 | 4.41 | 4.39 | 4.37 | 4.37 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 3.87 | 3.81 | 3.77 | 3.75 | 3.74 | 3.72 | 3.71 | 3.69 | 3.68 | 3.67 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.44 | 3.38 | 3.34 | 3.32 | 3.30 | 3.29 | 3.27 | 3.25 | 3.24 | 3.23 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.15 | 3.08 | 3.04 | 3.02 | 3.01 | 2.99 | 2.97 | 2.95 | 2.94 | 2.93 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 2.94 | 2.86 | 2.83 | 2.80 | 2.79 | 2.77 | 2.76 | 2.73 | 2.72 | 2.71 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.77 | 2.70 | 2.66 | 2.64 | 2.62 | 2.60 | 2.59 | 2.56 | 2.55 | 2.54 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.12 | 2.04 | 1.99 | 1.97 | 1.95 | 1.92 | 1.91 | 1.88 | 1.86 | 1.85 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 1.93 | 1.84 | 1.79 | 1.76 | 1.74 | 1.71 | 1.70 | 1.66 | 1.64 | 1.63 |
40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 1.84 | 1.74 | 1.69 | 1.66 | 1.64 | 1.61 | 1.59 | 1.55 | 1.53 | 1.52 |
50 | 4.03 | 3.18 | 2.79 | 2.56 | 2.40 | 2.29 | 2.20 | 2.13 | 2.07 | 2.03 | 1.78 | 1.69 | 1.63 | 1.60 | 1.58 | 1.54 | 1.52 | 1.48 | 1.46 | 1.45 |
60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.75 | 1.65 | 1.59 | 1.56 | 1.53 | 1.50 | 1.48 | 1.44 | 1.41 | 1.40 |
70 | 3.98 | 3.13 | 2.74 | 2.50 | 2.35 | 2.23 | 2.14 | 2.07 | 2.02 | 1.97 | 1.72 | 1.62 | 1.57 | 1.53 | 1.50 | 1.47 | 1.45 | 1.40 | 1.37 | 1.36 |
80 | 3.96 | 3.11 | 2.72 | 2.49 | 2.33 | 2.21 | 2.13 | 2.06 | 2.00 | 1.95 | 1.70 | 1.60 | 1.54 | 1.51 | 1.48 | 1.45 | 1.43 | 1.38 | 1.35 | 1.34 |
90 | 3.95 | 3.10 | 2.71 | 2.47 | 2.32 | 2.20 | 2.11 | 2.04 | 1.99 | 1.94 | 1.69 | 1.59 | 1.53 | 1.49 | 1.46 | 1.43 | 1.41 | 1.36 | 1.33 | 1.31 |
100 | 3.94 | 3.09 | 2.70 | 2.46 | 2.31 | 2.19 | 2.10 | 2.03 | 1.97 | 1.93 | 1.68 | 1.57 | 1.52 | 1.48 | 1.45 | 1.41 | 1.39 | 1.34 | 1.31 | 1.30 |
200 | 3.89 | 3.04 | 2.65 | 2.42 | 2.26 | 2.14 | 2.06 | 1.98 | 1.93 | 1.88 | 1.62 | 1.52 | 1.46 | 1.41 | 1.39 | 1.35 | 1.32 | 1.26 | 1.22 | 1.21 |
300 | 3.87 | 3.03 | 2.63 | 2.40 | 2.24 | 2.13 | 2.04 | 1.97 | 1.91 | 1.86 | 1.61 | 1.50 | 1.43 | 1.39 | 1.36 | 1.32 | 1.30 | 1.23 | 1.19 | 1.17 |
500 | 3.86 | 3.01 | 2.62 | 2.39 | 2.23 | 2.12 | 2.03 | 1.96 | 1.90 | 1.85 | 1.59 | 1.48 | 1.42 | 1.38 | 1.35 | 1.30 | 1.28 | 1.21 | 1.16 | 1.14 |
1 000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.11 | 2.02 | 1.95 | 1.89 | 1.84 | 1.58 | 1.47 | 1.41 | 1.36 | 1.33 | 1.29 | 1.26 | 1.19 | 1.13 | 1.11 |
2 000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.10 | 2.01 | 1.94 | 1.88 | 1.84 | 1.58 | 1.46 | 1.40 | 1.36 | 1.32 | 1.28 | 1.25 | 1.18 | 1.12 | 1.09 |
Voir aussi
modifierNotes et références
modifier- (en) Milton Abramowitz (éditeur) et Irene A. Stegun (éditeur), Handbook of Mathematical Functions : With Formulas, Graphs, and Mathematical Tables, New York, Dover Publications, , 1046 p. (ISBN 978-0-486-61272-0, lire en ligne)
- NIST (2006). Engineering Statistics Handbook - F Distribution
- (en) Alexander Mood, Franklin A. Graybill et Duane C. Boes, Introduction to the Theory of Statistics, McGraw-Hill, , 3e éd. (ISBN 978-0-07-042864-5), p. 246-249
- E. Morice, « Quelques modèles mathématiques de durée de vie », Revue de statistique appliquée, t. 14, no 1, , p. 45-126 (lire en ligne), p. 68
Liens externes
modifier- Table of critical values of the F-distribution
- Online significance testing with the F-distribution
- Distribution Calculator pour calculer les probabilités et les valeurs critiques des lois normales, de Student, du Chi-deux et de la loi de Fisher
- Cumulative distribution function (CDF) calculator for the Fisher F-distribution
- Probability density function (PDF) calculator for the Fisher F-distribution