Inégalité de Hilbert
L'inégalité de Hilbert est une inégalité classique en analyse, Elle remonte à un article du mathématicien allemand David Hilbert de 1888 et donne une majoration de certaines sommes doubles de nombres réels positifs. L'inégalité de Hilbert a été raffinée, généralisée et modifiée par de nombreux auteurs. Enfin, Hermann Weyl — par exemple dans sa thèse de habilitation Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems de 1908 — et en particulier Godfrey Harold Hardy ont effectué des recherches approfondies.
Énoncés
modifierSuite de nombres réels
modifierUn premier énoncé concerne des suites de nombres réels positifs. Il est le suivant[1] :
Hilbert (1) — Soient des nombres réels positifs ; alors
De fait, Hilbert a prouvé cette formule avec un facteur ; le facteur est dû à son élève Issai Schur. Le facteur a été lui-même remplacé par dans un article de H. Frazer[2] de 1946. D. V. Widder a donné la précision supplémentaire[3] :
Hilbert (1') —
Suite double
modifierUne deuxième série d'énoncés concerne des suites doubles ; voici la formulation donnée dans l'Encyclopædia of Mathematics[4] :
Hilbert (2) — On a :
avec .
Fu Cheng Hsiang[5] a démontré l'inégalité suivante[1] pour des suite de nombres réels positifs :
Hilbert (2') —
Suite de nombres complexes
modifierUne deuxième série d'énoncés concerne des suites de nombres complexes. L'inégalité de Hilbert est la suivante, d'après Steele[6] :
Hilbert (3) — Soit un suite de nombres complexes : si la suite est infinie, on la supose de carré sommable ( ). Alors
Pour une suite double, on a :
Hilbert (3') — Soient des nombres complexes. Alors
Variante
modifierUne variante avec les sommes remplacées par des intégrales :
Hilbert (4) — Soient deux fonctions non identiquement nulles, et soient des nombres réels avec . Alors
Bibliographie
modifier- Dragoslav S. Mitrinović, Analytic inequalities : In cooperation with Petar Vasić, Springer, coll. « Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete » (no 165), , vi + 400 (ISBN 3-540-62903-3, MR 0018226, zbMATH 0199.38101, lire en ligne)
- H. Frazer, « Note on Hilbert’s inequality », The Journal of the London Mathematical Society, vol. 21, , p. 7–9
- Godfrey Harold Hardy, « Note on a theorem of Hilbert », Mathematische Zeitschrift, vol. 6,
- G. H. Hardy, « Note on a theorem of Hilbert concerning series of positive terms », Proceedings of the London Mathematical Society (2), vol. 23,
- G. H. Hardy, J. E. Littlewood et G. Pólya, Inequalities : Reprint (of the 2. edition 1952), Cambridge, Cambridge University Press,
- David Hilbert, « Ueber die Darstellung definiter Formen als Summe von Formenquadraten », Mathematische Annalen, vol. 32, , p. 342–350 (lire en ligne)
- Fu Cheng Hsiang, « An inequality for finite sequences », Mathematica Scandinavica, vol. 5, , p. 12–14
- Edmund Landau, « A note on a theorem concerning series of positive terms », Journal of the London Mathematical Society, vol. 1, , p. 38–39
- J. Michael Steele, The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities, Cambridge University Press, coll. « MAA problem books », (ISBN 978-0-521-83775-0)
- Waadallah Tawfeeq Sulaiman, « Hardy-Hilbert's integral inequalities via homogeneous functions and some other generalizations », Acta et Commentationes Universitatis Tartuensis de Mathematica, vol. 11, , p. 23–32 (MR 2391968)
- David Vernon Widder, « An Inequality Related to One of Hilbert’s », Journal of the London Mathematical Society, vol. 4, , p. 194–198 (MR 1575045, lire en ligne)
- Bicheng Yang et Qiang Chen, « A new extension of Hardy-Hilbert's inequality in the whole plane », Journal of Function Spaces, , article no 9197476 8 pages (MR 3548430)