En mathématiques, le groupe de Held, He, est l'unique groupe sporadique d'ordre 210 · 33 · 52 · 73 · 17 = 4 030 387 200. Il peut être défini en termes de générateurs a et b et de relations :

Il a été nommé ainsi en l'honneur du mathématicien allemand Dieter Held (de) (né en 1936).

Il a été découvert par Held[1] à la fin de 1968, lors d'une recherche des groupes simples contenant un élément d'ordre 2 dont le centralisateur est isomorphe au centralisateur d'un élément d'ordre 2 du groupe de Mathieu M24[2],[3]. Une seconde possibilité est le groupe projectif spécial linéaire L5(2). Le groupe de Held est la troisième possibilité. Sa construction a été achevée par John McKay et Graham Higman.

Le groupe de Held a un multiplicateur de Schur d'ordre 1 et un groupe d'automorphismes extérieurs d'ordre 2.

Il agit sur une algèbre vertex sur le corps fini à 7 éléments.

Notes et références

modifier
  1. (en) Daniel Gorenstein, Finite Simple Groups, an introduction to their classification, 1982 Plenum Press, New York.
  2. (en) Held, D. (1969a), "Some simple groups related to M24", in Brauer, Richard; Shah, Chih-Han (eds.), Theory of Finite Groups: A Symposium, W. A. Benjamin.
  3. (en) Held, Dieter (1969b), "The simple groups related to M24", Journal of Algebra, 13 (2): 253–296, doi:10.1016/0021-8693(69)90074-X, MR 0249500.