Fonction de Kelvin-Bessel

Les fonctions de Kelvin-Bessel sont des fonctions mathématiques obtenues à partir des fonctions de Bessel, en prenant comme argument pour ces dernières les racines carrées d'un nombre imaginaire pur.
Elles sont utilisées en électromagnétisme pour étudier les solutions des équations de Maxwell dans des domaines conducteurs de forme cylindrique.

Définition

modifier

On définit deux familles de fonctions de Kelvin-Bessel. La première famille comporte deux fonctions   et   d'ordre  , liées aux fonctions de Bessel de première espèce :

 .

Une autre façon de définir ces fonctions est de les écrire sous la forme d'une série :

 ,
 .

La seconde famille comporte deux autres fonctions   et   d'ordre  , liées aux fonctions de Bessel modifiées de seconde espèce :

 .

Quelques propriétés

modifier

Représentation graphique

modifier

Les fonctions de Kelvin-Bessel d'ordre  , plus simplement notées   et  , sont représentées sur la figure suivante pour les petites valeurs de   :

 
Courbes représentatives des fonctions de Kelvin-Bessel d'ordre zéro   et  .

Les fonctions   et   sont solutions de l'équation de Bessel particulière suivante :

 ,

dont la solution générale s'écrit :

 .
 
 

Représentations graphiques

modifier

Références

modifier
  • A. Angot, Compléments de mathématiques à l'usage des ingénieurs de l'électrotechnique et des télécommunications, Paris, Masson, .
  • (en) F. D. Burgoyne, « Approximations to Kelvin Functions », Mathematics of Computation,‎ (DOI 10.1090/S0025-5718-1963-0159416-9, lire en ligne)

Liens externes

modifier