Fayalite
La fayalite, est une espèce minérale du groupe des silicates et du sous-groupe des nésosilicates constituée de dioxyde de silicium (SiO2) et de fer. Elle possède ainsi la formule chimique Fe2SiO4 avec des traces ou impuretés en manganèse (Mn). Relativement rare dans la nature elle est très fréquente dans les scories de l'industrie du fer. La fayalite est ainsi le pôle pur ferreux de l'olivine (le pôle pur magnésien étant la forstérite).
Fayalite Catégorie IX : silicates[1] | |
Fayalite - Coso Hot Springs, Californie, États-Unis - (XX 1 mm) | |
Général | |
---|---|
Classe de Strunz | 9.AC.05
|
Classe de Dana | 51.03.03.01
|
Formule chimique | Fe2SiO4 |
Identification | |
Masse formulaire[2] | 203,773 ± 0,006 uma Fe 54,81 %, O 31,41 %, Si 13,78 %, |
Couleur | verte, jaune, brune, noire |
Système cristallin | orthorhombique |
Réseau de Bravais | primitif P |
Classe cristalline et groupe d'espace | dipyramidale ; Pbnm |
Macle | possible |
Clivage | peu net à (010) |
Cassure | conchoïdale |
Échelle de Mohs | 6,5 - 7 |
Trait | blanc |
Éclat | vitreux |
Propriétés optiques | |
Indice de réfraction | α=1,731-1,824 β=1,760-1,864 γ=1,773-1,875 |
Biréfringence | Δ=0,042-0,051 ; biaxe négatif |
Pléochroïsme | faible : vert pomme / jaune foncé / vert clair |
Dispersion optique | 0,015 |
Fluorescence ultraviolet | nulle |
Transparence | transparente à translucide |
Propriétés chimiques | |
Densité | 4,39 |
Température de fusion | 1208 °C |
Fusibilité | fond et donne une boulette magnétique |
Solubilité | soluble dans HNO3 |
Propriétés physiques | |
Magnétisme | aucun |
Radioactivité | aucune |
Unités du SI & CNTP, sauf indication contraire. | |
modifier |
Inventeur et étymologie
modifierDécrite en 1840 par Christian Gottlieb Gmelin[3], son nom vient de celui de l’île de Fayal dans les Açores, où elle fut découverte[4],[5].
Topotype
modifierPropriétés physiques
modifierTrès dure, de densité de 6,5 – 7 selon l’échelle de Mohs, la fayalite se forme à des températures en dessous de 350 °C, plus basses que celle de la formation de la forstérite. Elle nécessite également un fort rapport eau/minéral et une pression élevée correspondant à un fort rapport H2/H2O.
Cristallographie
modifier- Paramètres de la maille conventionnelle : a = 4.76, b = 10.2, c = 5.98, Z = 4 ; V = 290.34
- Densité calculée = 4,66
Cristallochimie
modifierElle forme une série avec la forstérite d'une part et la téphroïte d'autre part. Elle fait partie du groupe de l'olivine.
Groupe de l’olivine
modifierLes membres de ce groupe répondent à la formule Me2SiO4 où Me peut être le calcium, le magnésium, le manganèse, le fer, et/ou le nickel.
- Fayalite Fe2SiO4
- Forstérite Mg2SiO4
- Glaucochroïte CaMnSiO4
- Kirschsteinite CaFeSiO4
- Laihunite FeIIFeIII2(SiO4)2
- Larnite Ca2SiO4 (monoclinique)
- Liebenbergite (Mg,Ni)2SiO4
- Monticellite CaMgSiO4
- Olivine (Mg,Fe)2SiO4
- Téphroïte Mn2SiO4
Gîtologie
modifierLa fayalite se trouve communément dans les roches basiques et ultrabasiques, donc volcanique et plutonique, un peu moins dans les roches plutoniques felsiques et très rarement dans les granites pegmatitiques, dans les lithophyses, les obsidiennes, les roches métamorphiques riches en sédiments métalliques et dans les phylosilicates.
La fayalite coexiste habituellement avec de la troïlite, kamacite, magnétite, chromite, Ca-Fe pyroxène, les roches carbonatées impures.
La fayalite avec le quartz est stable à faibles pressions, alors que l’olivine magnésienne ne l’est pas. La fayalite réagit avec l’oxygène afin de produire de la magnétite et du quartz, ces trois minéraux composant le tampon oxygéné « FMQ ». La réaction est alors utilisée pour calculer la fugacité des enregistrements d’oxygène dans les assemblages des minéraux métamorphiques et les processus des roches ignées.
La fayalite est présente dans certaines météorites.
Minéraux associés
modifierLa fayalite est souvent associée à : l’augite, le plagioclase, le microcline, le quartz, l’apatite, la magnétite, l’ilménite, aux spinelles, l'hedenbergite, l’arfvedsonite, et l’amphibole.
Synonymie
modifier- Chrysolite-fer
- Péridot ferrugineux (Fellenberg 1840)[6]
Variété
modifier- Hortonolite, variété de la série fayalite-forstérite qui peut aussi être considérée comme une variété de fayalite riche en Mg. Décrite par G.J.Brush en 1869[7].
- Knébélite, Terme intermédiaire de la série fayalite-tephroite, elle peut être considérée comme une fayalite riche en Mn. Décrite par J.W. Dobereiner en 1817 le mot dérive du patronyyme du découvreur le major Knebel[8],[9].
Gisements remarquables
modifier- Allemagne
- Nickenicher Sattel (Eicher Sattel), Eich, Andernach, Eifel, Rhin-Palatinat [10]
- Canada
- Blue Bell mine, Riondel, Colombie-Britannique
- États-Unis
- St. Peters Dome area, near Pikes Peak,
- El Paso Co., Colorado; at Obsidian Cli,
- Coso Hot Springs, parc national de Yellowstone, Wyoming
- Inyo Co., California; at Rockport,
- Essex Co., Massachusetts;
- from Monroe, Orange Co., New York;
- in the Iron Hill mine, Cumberland,
- Rhode Island, Comté de Providence
- France
- Charbonnier, Landos, Pradelles, Haute-Loire, Auvergne
- Rascas - Valpayette Mines, Les Mayons, Var
- Évisa, Corse-du-Sud, Corse
Critères de reconnaissance
modifierQuand elle fond, elle donne une boulette magnétique et elle est soluble dans l'acide nitrique (HNO3).
Notes et références
modifier- La classification des minéraux choisie est celle de Strunz, à l'exception des polymorphes de la silice, qui sont classés parmi les silicates.
- Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
- G. C. Gmelin, „Chemische Untersuchung des Fayalits“, in Annalen der Physik und Chemie, vol. li, p. 160–164
- Jacques Lapaire, MINER Database - Minéraux et étymologie
- Albert Huntington Chester, A Dictionary of the Names of Minerals, John Wiley & Sons, New York, 1896, p. 93 (l’attribution à Johann Friedrich Gmelin est erronée)
- Ludwig Rudolf von Fellenberg (1840), „Analyse des Eisenperidots, eines neuen vulkanischen Minerals von den Azoren“, Annalen der Physik und Chemie, vol. 127 (2/051), p. 261
- G.J. Brush (1869): Am. Journal of Science, 48, 17-23.
- J.W. Dobereiner (1817): Jour. Ch. Ph., xxi, p. 49
- Traité de minéralogie, Volume 4 Par Armand Dufrénoy p.337 1859
- Hentschel, G., Zur Morphologie der Eifel-Olivine, Der Aufschluss, 391-396, 1983
Voir aussi
modifierBibliographie
modifier- Edward Salisbury Dana (1892) The System of Mineralogy of James Dwight Dana, 1837–1868, John Wiley & Sons, New York (NY), 6e éd., 1134 p., p. 451–457 [chrysolite]
- William Alexander Deer, R. A. Howie, J. Zussman (1982) Rock-forming Minerals, London, 2e édition, v. 1A, orthosilicates, 3:336
- William Alexander Deer, R. A. Howie, J. Zussman (1992) An introduction to the rock-forming minerals, 2e éd., Longman, Harlow, (ISBN 0-582-30094-0)
- J. R. Smyth (1975) "High temperature crystal chemistry of fayalite", American Mineralogist, 60: 1092–1097
- Roberts, W. L., Campbell, T. J., & Rapp, G. R. (1990). Encyclopedia of minerals. Van Nostrand Reinhold.
- H. St. C. O'Neill (1987) "The quartz-fayalite-magnetite equilibria and free energies of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4)", American Mineralogist, 72: 67-75
- Redfern, S. A., Knight, K. S., Henderson, C. M. B., & Wood, B. J. (1998). Fe-Mn cation ordering in fayalite–tephroite (FexMn1−x)2SiO4 olivines: a neutron diffraction study. Mineralogical Magazine, 62(5), 607-615.
- G. Hartung (1860) Die Azoren in ihrer äußeren Erscheinung und nach ihrer geognostischen Natur, Verlag von Wilhelm Engelmann, Leipzig
- Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. (1997). Handbook of Mineralogy. Volume III. Halides, Hydroxides, Oxides. XI 628 pp. Mineral Data Publishing, Tucson, Arizona. (ISBN 0 9622097 2 4).
- Mikhail Yu. Zolotov, Mikhail V. Mironenko, Everett L. Shock (2006) Meteoritics & Planetary Science, volume 41, no. 11, pages 1695–1835 (novembre)