Dans un espace topologique, un ensemble parfait est une partie fermée sans point isolé, ou de façon équivalente, une partie égale à son ensemble dérivé, c'est-à-dire à l'ensemble de ses « points limites », ou « points d'accumulation ».

Exemples

modifier

L'ensemble vide est parfait dans tout espace.

Dans ℝ, un segment [a, b] est un exemple simple d'ensemble parfait.

Un exemple moins évident est constitué par l'ensemble de Cantor[1]. Cet ensemble est totalement discontinu et homéomorphe à l'espace de Cantor  . Plus généralement, l'espace produit {0, 1}I est parfait lorsque I est un ensemble infini. Un exemple[2] d'ensemble parfait dans le plan, homéomorphe également à l'ensemble de Cantor, est l'ensemble    est une série absolument convergente de complexes telle que pour tout N,  .

On peut engendrer des ensembles parfaits de la façon suivante. Si   est une partie fermée de ℝn, on définit le dérivé   de   comme l'ensemble des points d'accumulation de  . Pour tout ordinal  , on pose   et, si   est un ordinal limite,  . Si   désigne le premier ordinal non dénombrable, on montre que[3] :

  • Ou bien  . On dit que   est réductible ;
  • Ou bien   et c'est un ensemble parfait.   est la réunion de cet ensemble parfait et d'un ensemble dénombrable.

Propriétés

modifier

Un ensemble parfait non vide de ℝ[4] ou ℝn[5] n'est pas dénombrable. Plus généralement et plus précisément :

Dans les deux cas, l'espace considéré a donc au moins la puissance du continu.

Toute partie fermée de ℝ (ou plus généralement : d'un espace polonais) est, de façon unique, réunion disjointe d'une partie dénombrable et d'un ensemble parfait : voir Théorème de Cantor-Bendixson.

Notes et références

modifier
  1. René Baire, Leçons sur les fonctions discontinues, Jacques Gabay, (1re éd. 1905, Gauthier-Villars), p. 54-57.
  2. Jean-Marie Arnaudiès, L'Intégrale de Lebesgue sur la droite, Vuibert, 1997, p. 18-20.
  3. Baire 1995, p. 64-68.
  4. Baire 1995, p. 61.
  5. (en) Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, , 3e éd. (1re éd. 1953) (lire en ligne), p. 41.
  6. (en) Arlen Brown et Carl Pearcy, Introduction to Operator Theory I: Elements of Functional Analysis, coll. « GTM » (no 55), (lire en ligne), p. 68.
  7. (en) Vladimir I. Bogachev, Measure Theory, vol. 1, Springer, (lire en ligne), p. 8.
  8. (en) « Cardinality of a locally compact Hausdorff space without isolated points », sur Mathematics Stack Exchange, .

Articles connexes

modifier