Degré (mathématiques)

De manière générale, un degré indique une quantité définie qui s'ajoute ou qui caractérise de façon discontinue un phénomène :

  • on parle des degrés d'une échelle pour désigner les barreaux ou les marches (on monte d'une quantité donnée à chaque pas) ;
  • on parle du degré d'un séisme pour désigner son intensité.

En relation avec ce concept décrivant le monde physique, les mathématiciens ont baptisé degré certaines caractéristiques d'objets issus de domaines très divers : algèbre, topologie, théorie des graphes, statistique

Degré en algèbre

modifier

Degré d'un polynôme

modifier

À une indéterminée

modifier

Soit   un anneau. L'anneau des polynômes à une indéterminée sur   est  , soit   un polynôme à coefficients dans  .

Le degré de  , noté   ou   est défini par :

  • Si  ,  
  • Sinon, pour  , on définit :  

Par exemple,  

En plusieurs indéterminées

modifier

Soient   un anneau et  . L'anneau des polynômes à   indéterminées sur   est  

Le degré du polynôme nul est toujours  .

Sinon on considère l'ensemble des « sommes des exposants des indéterminées » dans chaque terme. Le degré du polynôme est alors le plus grand élément de cet ensemble.

Par exemple : dans  

Degré d'une fraction rationnelle

modifier

Soit   un anneau commutatif, unitaire, intègre. Le corps des fractions rationnelles à une indéterminée sur   est  . Soit  . Il existe   et   tel que  .

La grandeur   est indépendante du représentant   choisi pour  .

On définit alors  , noté   ou  .

Propriétés du degré

modifier
  •  
  • Si   est intègre,  

Degré en théorie des graphes

modifier

En théorie des graphes, le degré d'un sommet est le nombre d'arêtes issues de ce sommet.

On parle aussi du degré minimal d'un graphe et de son degré maximal. Quand le graphe est régulier, on peut parler du degré du graphe.

Degré en topologie

modifier

Le degré d'une application continue entre variétés de même dimension est une généralisation de la notion d'enroulement d'un cercle sur lui-même. C'est un invariant homologique à valeurs entières positives.

Degré en géométrie

modifier

En géométrie, le degré est une unité d'angle définit comme   d'un tour. C'est une unité utilisé pour caractériser les rotations et les angles entres les objets. Il est lié aux autres unités d'angle comme le radian, stéradian ou encore la minute et seconde.

Voir aussi

modifier