Anneau intégralement clos

anneau qui est sa propre clôture intégral dans son corps de fractions

En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A.

  • Plus généralement, un anneau intègre A, de corps des fractions K, est intégralement clos si et seulement si tout polynôme unitaire irréductible de A[X] reste irréductible dans K[X][2].
  • Un anneau de Dedekind est intégralement clos (par définition).
  • En fait, un anneau intègre est intégralement clos si et seulement si c'est une intersection d'anneaux de valuation pour son corps des fractions[3].

Références

modifier
  1. (en) « Proof that a gcd domain is integrally closed », sur PlanetMath.
  2. (en) Muhammad Zafrullah, Daniel D. Anderson et Pramod K. Sharma, « Factorization of certain sets of polynomials in an integral domain », International Journal of Commutative Rings, vol. 3,‎ (lire en ligne), Theorem 3.
  3. N. Bourbaki, Algèbre commutative, chap. VI, § 1, no 3.